Existence of Quasi-arcs

نویسنده

  • JOHN M. MACKAY
چکیده

We show that doubling, linearly connected metric spaces are quasiarc connected. This gives a new and short proof of a theorem of Tukia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A ug 2 00 7 EXISTENCE OF QUASI - ARCS

We show that doubling, linearly connected metric spaces are quasi-arc connected. This gives a new and short proof of a theorem of Tukia.

متن کامل

3-transitive Digraphs

Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A digraph D is 3-transitive if the existence of the directed path (u, v, w, x) of length 3 in D implies the existence of the arc (u, x) ∈ A(D). In this article strong 3-transitive digraphs are characterized and the structure of non-strong 3-transitive digraphs is described. The results are used, e.g...

متن کامل

Some existence results for generalized vector quasi-equilibrium problems

‎In this paper‎, ‎we introduce and study a class of generalized vector quasi-equilibrium problem‎, ‎which includes many vector equilibrium problems‎, ‎equilibrium problems‎, ‎vector variational inequalities and variational inequalities as special cases‎. ‎Using one person game theorems‎, ‎the concept of escaping sequences and without convexity assumptions‎, ‎we prove some existence results for ...

متن کامل

On the existence of (k, l)-kernels in infinite digraphs: A survey

Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent (if u, v ∈ N , u 6= v, then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l) set of vertices. A k-kernel is a (k, k− 1)-kernel. This work is a survey of results proving sufficient conditions for the exist...

متن کامل

Strongly Connected Spanning Subdigraphs with the Minimum Number of Arcs in Quasi-transitive Digraphs

We consider the problem (MSSS) of nding a strongly connected spanning subgraph with the minimum number of arcs in a strongly connected digraph. This problem is NP-hard for general digraphs since it generalizes the hamil-tonian cycle problem. We show that the problem is polynomially solvable for quasi-transitive digraphs. We describe the minimum number of arcs in such a spanning subgraph of a qu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008